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8I
K / (T ^)	 2. 90 x 1022T 13/2 exp(-	 on (

m-3 )	 (3)
T

I )

where Sion = 1.831 x 105 °K is the (first) "ionization temperature".

If k£e (T") is the production rate for electron-impact: reactions, then

from the principle of detailed balancing the corresponding three-body

recombination rate is k' = k' /K' 	 Thus, the electron production rate
re  fe eq

by Eq.(la) may be written

n i2

(ne) e k fe ') ne ^nA	 (TeKeq  )

Consistent; with the single-temperature, ground-state ionization model

assumed previously, we can use the expression for k' given by the formula
e

and (argon) data in Zel 'dovich and Raiz;erl0.

N 1
	

N /

k , 	 -2 1. 13/2/ lion	 lion	 3fe (T) = 1.07 x 10 T	 --- n + 2) exp(-	 1) (m /sec)
T	 `	 T

As in Ref. 6, we let Q" and Qez be the elastic collision cross-

sections for electron-atom and electron-ion collisions. The electrical

conductivity can then be written  as

_ e2 (TTme l	 n 

e 8kT	 (nAQ + neQel)

where m = 9.107 x 10 -31 kgis the mass of an electron, e = 1.602 x 10-9
e	

C

is the charge of an electron and k = 1.380 x 10 -23 J/*K is Boltzmann's

constant. Also, following Refs. 6 and 7, a reference degree of ionization

(4)

(5)

T	 _..	 -
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ABSTRACT

The influence of shock-induced precursor ionization on the steady-

state structure of switch-on shock waves with nonequilibrium ionization

and radiation is examined theoretically. A single-temperature monatomic

gas is assumed, together with a Clarke-Ferrari model for photoioni.zation

of the upstream gas. It is found that the effect of the precursor depends

in general on the ratio of a characteristic precursor length to a

characteristic magnetic interaction length. For the slightly ionized

case treated in some detail, this ratio is much greater than unity, in-

dicating a precursor-independence for the magnetohydrodynamic shock

structure.
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B / ;B	 = magnetic field intensity(w/m2); B'/Bx
1

B ion	 = frequency-integral of Planck function[J/(m -sec)], EgMa)

c	 = velocity of light (2.998 x 10 8 m/sec)

e	 = electron charge (1.602 x 10-9C)

E^;E	 = electric field intensity (V/m); E/(ux l BX )
1

f	 = dimensionless function; Eq.(22)

g	 = dimensionless function; Eq.(21)

h	 = Planck's constant (6.625 x 10 -34 J-sec)

i/
	

= static enthalpy (J/°K)

k
	

= Boltzmann's constant (1.380 x 10 -23 J/°K)

= constant defined by Eq(31)

= forward ionization rate parameter for electron-atom impacts

(m3 /sec); k /[(2 ) Q AA U1]
e	 1

= three-body recombination rate for electron-impact reactions (m /see)

= equilibrium constant (1/m3); K' m /p^
eq A 1

_ X//fir , a constant

= atomic mass (kg)

= electron mass (9.107 x 10-31kg)

Mach number

= Alfven number

= global number density (1/m

= atom number density ( 1/m3)

= electron number density (1/m3)

electron production rate due, to electron-impact reactions

[l /.(m.3-sec) ]

= electron production rate by photoionization [1/(m
3
_ see)]
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p ' - static pressure (N/m)

gr'; gr - radiative heat flux 1j/ (m - sec) 1; qr/(p'u'
RGion)1

Q = atom-atom elastic collison cross-section (m2)

Q'eA. = electron-atom elastic collision cross -section (m )

Q/ = electron-ion (Coulomb) collision cross-section (m )

Q'
r

- pl ►otoionization cross-section at ionization edge (m )

R = k/ ma = gas constant [J/ (kg - OK)]

Rm = QIµoux	 1 - magnetic Reynolds number

S'; S
1

= source function [J/ (m -see) ] ; S'/ (p'Ux RO on)
1

T ;T = gas temperature ( * K); T'/T

u';u = gas velocity in shock-frame (m/sec) ; u'/u'
1

x';x = streamwise coordinate (m) ; x' /%

x = transformed x-coordinate,Eq.02)

y' = transverse	 (radial) coordinate (m)

Z/	 = transverse (aximuthal) coordinate (m)

a	 = degree-of-",onization

aeq	 = reference (equilibrium) degree-of-ionization

(a') e	 = degree-of-ionization production rate by electron impacts

(1./sec)

61)
r	

= degree-of-ionization production rate by photoionization

(1/sec)

e l ,e 2	 = constants defined by Egs.(23a,b)

s!i.on' 9ion	 on
= ionization "temperature" (°K); S' /T'

X .1	 = atom-atom mean free path (m)

Xr = photon-atom mean free path at ionization edge (m)

110
= magnetic permeability 1.n vacuo (4TT x 10 -7 N/A 2)

vi



V 
i	 as Photon frequency (1/sec)

P ;P	 a SaB density (k8/m3) P,/P,

(Y	 w electrical. conduc -, ivity [l/(ohm - m) J

subscripts

upstream of shack

2 = downstream of shock

A = atom specie

e m electron specie

1 0 ion specie

ion w ionization energy

S * imbedded shock l.ocition

x M X'-direction

y = y -direction

z W Z'-direction



1. Introduction

The use of annular clectromainetic shock tubes to produce laboratory

scale plasmas has motivated a number of theoretical studies of "switch-on"

hydromagnetic shock waves, thought to propagate in these devices 1-7.

When the gas is initially ionized and o1notrically conducting the

transition from the upstream to the downstream stake is a pure

ma8netohldrodynamic shock wave whose structure (for a perfect gas) was

treated theoretically by Bleviss l . If, on the other hand, the upstream

,gas is electrically non-conducting, the magnetrohydrodynamic jump

conditions are no longer mathematically sufficient to relate upstream

and downstream states. This latter type is commonly termed a gas•ionizin

hydromagnatic shock and has been discussed by Gross , Ta.ussig '

Perona and .Axford5 and others. It was shown in these works that the

condition of zero upstream electrical, conductivity leads.to an

indeterminacy in the value of the electric field in front of the shock.

Recourse must then be made to other physical principles to define the

jump conditions, i.e. a magnetohydrodynamic analogy of the Chapman-Jouget

hypothesis2 . These considerations, in turn, relate to the present

interest in the effect of precursor ionization on switch-on shocks. in

v:Lew cf the electrical conductivity requirement, not only the details

of structure, but the very existence of the more general gas-ionizing

switch-on shocks, can be influenced by precursor effects. In the present

study we are primarily concerned with the effect of precursor ionization,

caused by photoionization of the cold upstream gas by the hot downstream

portion of the shock, on the overall structure of "switch-on" shocks.

A



The sib nificam of precursor ionization has been discussed previously 

in the context of the more general hydromagneti.cally oblique shock

fronts encompassing both fast and slow shocks. It was shown there that

if a gasdsrnamic shock was required to "trigger" the ionizing reactions

leading to electrical conductivity in the gas, then (or the monatomic

gas model used in that work) galy slow solutions could be constructed.

on the other hand, it was recognized that gas in front of the shock

could be made electrically conducting by a radiation-induced precursor

mechanism, thus providing a physical basis for fast shack structures.

Since the switch-on shock (the subject of interest in the shock tube

case) is magnetohydrodynamically fast the effect of such precursors

has considerable practical interest.

1•igure la illustrates the goometry of an annular electromagnetic

shock tube and the way in which a steady-state shock front can be generated

in the annular space. Under appropriate conditions of density ; magnetic

and electric field strength, etc., the switch-on mode of operation is

anticipated; when the axial magnetic field B IX is applied through the
1

solenoid coils and an electric field E is simultaneously applied

radially across the channel, an ionized sh qk ronl is driven into

1:,he quiescent gas Oith velocity uX	 We denote the upstream and downstream
l

status of the shock by subscripts 1 and 2 respectively, in shock ,fixed.

coordinates. The transverso- components of velocity and magnetic field

are initially zero (u z' = Bz	 0) as depicted in Fig, lb ; however,
_1	 1

within the shock ;Front structure, these transverse components are induced

or switched on so that u' # 0; B" # 0.

2

1



In what follows, the switch-on shock is analysed in conjunction

with a sample precursor inodel due to Clarke and Ferrari in order, to

determine the effect on the overall structure. The actual physical

situation involves coupled phenomena of radiation, chemical nonequili-

brium and magnetohydrodynamic interaction;and these effects are all

included in the model.. However, to make the relations more explicit

the analysis is carried out for a monatomic, singly ionizing, single-

temperature gas. Numerical constants are evaluated for argon but

generalization of this analysis to other monatomic gases is straightforward.

If monatonic hydrogen is chosen the analysis has astrophysical.. interest.

Expressions governing the radiative heat flux, the photoionization

rate and electron-atom impart i Di).^ ation rates are developed in Section 2.

These relations together with One one-dimensional conservation and

Maxwell equations des^ribed in Section 3 are the governing equations for

overall shock structure. In Section 4 certain important properties of

the integral curves of this system are discussed, in particular, the

question of whether the shock is fully or only partly dispersed by

magnetic induction effects, In Section 5, the shock structure is

analyzed for the special rase of a slightly ionized gas. Finally,

conclusions are drawn in Section 6 regarding the significance of precursor

effects in general,

2,	 Radiative Heat Flux and Ionization Fates

Prior to analysis of the shock front per se, a radiation and Toni-

zatibn,-model applicable within the shock structure will be developed. It

'Al be assumed that the only reactions of any significance in electron-

production have the form,

3
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^_Ib

e - + Ar.q''Ar+ + e - + e - (electron-impact)	 (la)

by + Ar:^AT + e - 	(pbotoionization)	 (lb)

These art.; the same set of reactions studied by Clarke and Ferrari  in

their treatment of simultaneous chemical and radiative nonequilibrium

in shock waves. Moreover, it is assumed that atoms are in their ground

state so that ionization will only take place when the collision with a

photon (hv) or an electron (e -),impact can provide more energy than the

first ionization potential. Recently, an alternate non-thermal absorp-

tion process has been proposed by Vulliet 9 : photons emitted by the hot

post-shock-gas from the resonance line near the wings are first absorbed.by

upstream atoms;these excited atoms then absorb and thermalize the far

wing and continuum by photoionization. This results in resonance

radiation heating of the preshocked gas. A steady state is reached

when the moving shock engulfs energy at the same rate it radiates it.

Therefore, one expects a larger electron concentration farther ahead

of the shock than given by the Clarke-Ferrari model used here, since

only the energy in the continuum above the ground state ionization

energy is absorbed and thermalized. Nevertheless, from the point of

view of shock structure, the major conclusions based on the present

simplied model are expected to remain valid, even if a more complex

resonance radiation model or multi-tempeinature model were employed as

will be discussed subsequently.

We now turn to the de_i--v ::ion of nonequilibrium equations for

ionization and radiation. Henceforth.; "primes" are used -to denote

physical (dimensional) quantities as distinguished from dimensionless

4
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"unprimed" quantities, to be introduced shortly. Rather than deal

directly with electron, atom and global number densities, n e , nA and

n'(= nA + 2n.) we work directly with the degree-of-ionization a since

this single quantity together with the gas density p' specifies the

number densities. Let,

n

	

a —	 e
n/+nA^

with the properties

enA 	nA	
mA	 , n -	 mA

	 (2)

where mA = 6.628 x 10 -26 kg is the mass of an atom and p l is the mass

density of the mixture. In a separate analysis, it was shown that the

influence of a distinct electron temperature Te ^ T / on the Clarke-Ferrari

4 precursor model- would be to decrease the predicted length of the precursor.

Since the Clarke-Ferrari single-temperature model is know sa to underesti-

mate experimentally observed precursor lengths, there is, little to be

gained by considering a more complex two-temperature model in the

context of the present analysis. The qualitative of effect of more

realistic precursor models is significant however and is treated in

Section 6. For the overall reaction path Ar. Ar + e, an equilibrium

"constant",

n ,2

Keq (T ^) = p-)
nA eq

which depends only on temperature T° is derivable from statistical

mechanics. For argon 7 , this takes the form

5



a T a i a / 	+ ,_.,l+h a) - 2
(	 , p ,	 ) — ^	 --M-	 ( aeq 

r AK I (T ^)
eq

which corresponds to local thermodynamic equilibrium at number density n'

and temperature T. It is to be distinguished from the "aE" used by Clarke

and Ferrari  but is related to the latter by the equation
4. ^,

__ a___ (1 + a) aeq
^
aE 	 1 -a2

eq

The bound-free continuum photoionization model used here is, with

minor modifications, the same as that described in Ref. 8, In comparing

the two, the foregoing relation should be borne in mind. Making use of

Egs,(2) and (6) the degree-of-ionization production rate by electron-

impacts is

a _' 
mAkne^ 

e = k' (T ^) I-- ĵ	 a 1 r1 - a 1^	 (7)
e	 fe	 gym/ (\l+a

P	 A	 eq

The other ionizing process is photoionization which occurs when the

incident photon has a frequency V' equal to or greater than the "ionization

edge" frequency V! on k(D /h = 3.81 x 10 15 sec -1 , where h = 6.625 x 10-34J-sec

is Planck's constant. For temperatures of interest have kT 1 << hV/ so we
ion,

can write the Planck function

Bv(T ^) _ _	 2hv,3 /	 2hy 13 exp(- hv'1

C2[exp (hV /kT ) -1]	 c2	 ` kT JJ

where c = 2.998 x 108m/sec is the velocity of light in vacuo. Since the

radiant energy active in bound-free photoionization is above the ionization

7
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8

edge, the frequency integral,

CO	 i3	 i

$ i (T i)
	

fB i(Ti)dv2yionkTexplion
ion 	 U	 C2 T

lion

(8a)

0 /	 2
1.7 x 1.0 7 	T ,exp^_ 

,^3.on) /i - 1
T i	 ` sec)

appears in the theory. Also, in the presence of simultaneous chemical

and radiative non-equilibrium, Clarke and Ferrari showed that the appro-

priate grey-gas source function is

', i	
a2(1- a2) 	 i

3 (T p ,a) =	 B ion
eq(1

(T )	 (8b)
cx	 - a2)

A similar source function can be obtained for a two-temperature gas,

where the electrons may be either hotter or cooler than the background of

atoms and ions, Te / ^ T 1. The form is formally identical to Eq.(8b) with

Te as an argument rather than T'.

The relevant physical dimensions for photoionization by Eq.(lb) turns

out to be the photon mean free path

_	
mA	

(9)
r	 p /(1 - cz)Q

based on the photo-cross-section at the ionization edge. The experiments

of Rustgi
11
 and other sources give this as Qr = 3.6 x 10 -21m .



If the integro -exponential function of order two defined by

E (z)	 Iex( zldt is approximated	 ^	 ^2	 - 
f	

p`- 
t/	

pproximated by E2 (z)	 expC-(3) 	 as

0

suggested for example by Vincenti and Kruger ll then a differential

equation is obtainable from Ref. 8 for the radiative heat flux above the

ionization edge qr, which takes the form,

i

% d
	

(^ agr1 = 3q' + 4TTX " dS^r	 \ r	 ^/	 r	 r
dx	 dx	 dx

Moreover, the Clarke-Ferrari theory shows that the electron production

rate per unit volume by photoionization is related to the gradient of q^r

through

aqr
e r	

k0^ • dx
ion

Defining a degree - of-ionization production rate as we did in Eq.(7) gives

cx = mA(ne . r = -	
1	 dqr	 (11)

r	 P '	 P 
/RQ

ion dx

Neglecting diffusion, the conservation of electron (or ion) mass equation

in one dimensional geometries is simply u "(da /dx^) = cxe + Cdr or using Eq. (7)

(( ^11 (	 l r	 }2u	
^^ 

kf
e (^ ,) R̂	\l a Cx I L., 1 - Ua 1 J + ar	 (12)

dx	 A	 eq

3. Governing Dimensionless Equations

We choose as the characteristic length for the overall shock structure

problem the mean free path of the undisturbed gas upstream of the shock

9
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Ml = ue / (5RTi/3^
1

MA = (A1µ0ue 2 )k./Be
1	 1	 1

2

MA

pt(1-a)QAA

1

where 
QAA is the atom-atom elastic collision cross-section in the undisturbed

as. If T = 300°K,,	 '	 4 x 10-19m2-	
,

g	 1	 QAA 1

Referring now to Fig.(lb) the following dimensionless (unprimed)

variables and functions are defined in terms of upstream (state 1)

values:

x = x ^/^ 1 , p -- p %p', T --° T '/TL 	l ion - lion/T1

u = u /ue	 B == E //Bf	 E = E ^/ (ux BX)	 qr - q r/ (P luxRG ion)
1 1

(14)

M = a' LouX^^1	 itfe T^ kf e pl^`1'./(M ue 1 )	 S	 S ^/(p^uxRQion)

Keq= KegmA/pl , F = [QeA + a(Q ei - QeA)] / QAA

where µ0 = 4n' x 10 -7N/A2 is the magnetic permeability in vacuo. In the

above u, B, E and q  are the dimensionless velocity, mageetic field,

electric field and radiative heat flux vectors; Rm, kf , S and Keq are
e

the dimensionless magnetic Reynolds number, electron-impact rate, source

function and equilibrium constant; and F is a ratio of cross-sections

appearing in the electrical conductivity expression. It will also

prove useful to define the Mach number and Alfven number by

10
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which are constant for any given shock.

Consistent with the single-temperature, singly ionizing gas model

postulated previously, the thermal and caloric equations are

P t = p 'R ( l+a) T ! ;

ZR (14a) T '-Meii on

where p" and t' are pressure and specific enthalpy respectively. Using

these relations and including the radiation heat flux term qx in the

energy equation, the "inviscid" conservation and Maxwell equations

associated with the normal shock geometry of Fig. 11) can be written.

These, together with the dimensionless version of Egs,(10)-(12) take

the dimensionless form

dx 
(roux) = 0	 (15a)

B
2

dx ^Pux[u. + 3) 
^'u ^^ + 2

z	 0	 (15b)

	

5M..i 	x .1 2MA
4
1

B B

	

puxuz	 2
x z	 0	 (15c)

dx { 
MA

1

2	 2
u -^ u

dx {pu
xC 

32 
/ ^T + CxT 

+O;ion J + 

x 
2 

z

M1

q	 E3'
3Q,	 B

	+ io
2
n x + ^z	 0	

(15d)
5M1	 MA

1

11
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dB

dx	
0	 (150)

dE

dx
. 0	 (15f)

dB

dxz. = Rm (- 
y x z
to B - u E)

	

	 C .dx	 zx	 ^)

d2q^ 
= 3L21gr + 

4rrt dx	 (15h)
dx

lc
e (	 .. x-.1

2
 _ d r

dx 
u	 eqx 

where L 1	6.24 x 10 -3 for argon.

Making use of Eq. (14) , we can also write the functions a, q , k f ,
e

Rm and 5,

aeq(a,
T,ux) = [1 + u—	 a-) -^	 (16a)

L	 xK eq

kv CT `>

k  (T) ^e i i	
(16b)

e

	
(2) k
 Q^ ux

1 1

µ e2 ^^ 1
k Mla

^Rm(a,T) =	 C	 3l(16c)
p IQ 

1	
48m 	 T F( a, T)



Equations (15a) through (151) are nine ordinary differential equations

in the nine unknowns, p , ux ,uz ,T,Bx , Bz , Ey , Ce and qro

The boundary conditions for this system relevant to the present

problem are

at x —# Mco : p = u = T = B as 1X	 X

at x -+ -co 
u 
	 B  = C4 a q  = dq r/dx a 0	 (17)

at x	 BEy	 y1

The- integral of Egs.(15a) through (151) consistent with the boundary

condition (17) is

	

P = IN , u z	 B z /MA , Bx	 ^., E	 (18a)x
1	 yl

B
2

lira	 z
Ij +	 0	 l8b)

5	 x	 2Ifi
1

1
68 q

(ux -1) + 3 IT(,^.-1 )- 5 anion- ` ^ `^^
	ion	

B	 B
r ^ z r2Ey + ^ 1 ^ 0 	(18c)

l	 5D?	 1,	 ^.

^,	 l

The differential equation for the magnetic induction, Eq. (15g) becomes

simply

dB	
(	

22

dxz = Rm I B-y + B,	 - 14. )1	 (19)l	 1

The physical requirement of zero induced currents in state 1 is equivalent

	

to requiring (dB z /dx)	 0 as x --#0. But since B  = 0 $ this will happen
1

if either By = 0 (magnetohydrodynami.c shock,) or Rm l = 0 (gas-ionizing
1

13



shock) or both.

Clearly if the upstream state is nonconducting (Rm I= 0 ),Eq. (l9) is

insufficient to uniquely define Ey 1 , It can however be shown that an

analogy exists between chemical, energy release and Joule heating within

the shockfront,a fact which has led some investigators to propose a

Chapman-Jouget like behavior as the criteria for determining E y .
1

Specifically, application of the Chaptnan-Jouget hypothesis to normal

gas ionizing shocks was suggested by Gross , developed further by

Taussig3,4 and has recently received some experimental confirmation in

the electromagnetic shock tube work carried out by Levine 13.

Keeping the more general gas-ionising case in mind we henceforth

restrict the analysis to the special case of E  = 0 (magnetohydro-
1

dynamic shock) since primary interest: is focused on the qualitative

influence of precursor ionization on hydromagnetic induction lengths.

The generalization to E  # 0 is straightforward however.
1

4. Integral Curves

It will now be shown, making the physically significantly assumption

of "small" values of the parameter P = a, that integral curves in

(ux) B z ) phase space can be constructed for various Alfven numbers in the

magnetohydrodynamic switch-on range. These curves nicely illustrate the

distinctien between shock structures which are fully dispersed by

magnetic induction effects and those containing imbedded gasdynamic dis-

continuities.

Letting Ey 1= 09 the magnetic induction equation, Eq.(19) can be

written in the form

14



dB
Z

	

six~ = 
Rm (a ,T) g (u., B 2 )	 (20)

where the function g is defined by

g ( uX I B z )	 B f i - 1/MA)	 (21)
1

Moreover, eliminating the quantity T(l+a) between Egs.(18b) and (18c) gives the

the quadratic equation in u A :

	

f(uX ,Bza lg r) = 4u2 -	 +	 + c- 1 )uX + (1 + 3 - E 2 ) = 0	 (22)

where the functions E 1 and E 2 are defined

	

E 1 (B Z )	 -	 )BZ	 (23a)

WA 1
	60 a	 q

	

C2 (BZr) —;7-^
44 )B2 + ion r1 + ar)	 (23b)

z	 5MI.
1

Solving f = 0 for u  gives the double-valued function

2

	

U (B Z ,Cx,g r) _ $ .(5 + 3 + E l f r9 (1 	 + 12)
M,

(24)

+ E 1 + (10 + 
b )E 1 + 16E2}

MI

Correspondingly, the value of T is

15



I + {M^/3) ( 1 -
T3	

uX .. c2)
T(uX , Z Agr) = `_- -	 (25)

At this point it is instructive to examine the role of the parameter

as— ion	
(26)P ^

M̂M7__—
M,

Note first from Eq.(15i) that if one neglects electron-impact; reactions

(kf = 0), da = dqr so that a z q r . It follows that 
qr

/a is at most of
e

order unity. Now suppose the parameter a is much less than onto, in

practice P << 1 eithu r when M1 is reasonably low (say) M , 10 and a is

very small throughout the structure, or when M1 is very large (say)

Ml = 50 or more and a becomes unity as the gas is fully ionized by the

shock front. In either of these cases since P << 1 and q /a S 1, itr
follows from Eq.(23b) that E 2 is virtually independent of a and q  and

therefore that u = uv (I3 ) from Eq.(24). It might also be pointed out that
X	 4[	 z

all cases of interest here correspond to M2 >> 1 in order to assure

sufficiently high temperatures associated with ionization levels of an

electrically conducting gas.

Thus, the integral curves in (uX ,B Z ) phase space corresponding to

the limits P -4 0 and M1 , 0 can be taken as representative of a physically

significant class of switch-on shocks actually generated in an apparatus

of the type shown in Fig. la	 If Rm.1 # 0, Rm2	0, then the curve g(ux,Bz)=0

passes through both states 1 and 2, since dB z/dx - 0 asymptotically upstream

and downstream of the shock front. (The latter conditions result from

requiring induced currents to vanish upstream and downstream of the

shock front.) Moreover, the structure solution proceeds along the

16



f(ux' Bz) = 0 curve (cf. Ref.6). The intersection of the f w 0 and g 0

curves are the endpoints of the shock structure at states l and 2.

It will become evident that the monatomic gas switch-on shocks of

interest here exist in the Alfven number range 1 -5 MA 5 2 for the
1

limits	 0, Ml --► Co. Figure 2 shows certain key integral curves

associated with the structure of these shocks, The positive and

negative signs before the square brackets relate to upper and lower

branches of the double-valued f = 0 function. It can be shown that these

branches are "open" when l s MA < ( 8 /5) k as seen for example in Fig.(2b).
l

Figures (2c)-(2e) show these integral curves after the f = 0 function

has become completely "closed" in the region ( 8/5) k < MA s 2. Here, a
1

maximum value of the magnetic field on the f = 0 curve can be identified

and computed from Eq.(24): B Z = B Z 
max

when (dB 
Z 
/du x) = 0. The corresponding

value of u  denoted ux 
max 

is given by

u	 =5	 l6+	 16 2-9

	

X, max s{ 22	 C C
1+	

2)	 251

	

25MA	 25MA

At state 2, g = 0, so that,, since B
Z^	

0, we get from Eq. (21)

1ux' 
2 M2A 1

Also, from Egs. (21) and (22) we know that the sign of B  and dBz/dx

is the same since u  > 1 always. We can conclude therefrom that, as the

structure solution proceeds along f = 0 from state 1 toward state 2, we

17
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dx = Rmdx (28)

rTt

r

must have B  monotonically increasing or monotonically decreasing. But

when f = 0 arJ g = 0 intersect after the "knee" of the f = 0 curve, as

in Fig.(2e), then the only permissible path is a transition along f = 0

from state 1 to 1* and a subsequent "jump" at constant B  from 1* to

state 2 in the value of ux . The latter structure is termed a ap rtly

dispersed sh ock while a continuous transition from state l to state 2

is termed a fully dispersed shock.

Figure 3 shows the variation of the final value of induced magnetic

field B in terms of Alfven number M 	 This curve is independent of any
z2	 Al

considerations of structure. Figure 4, on the other hand, illustrates

the range of Alfven numbers where fully dispersed and partly dispersed

shocks are found. The criteria are

ux 2 > ux max' MA < 1(9 /5)^ + 11	 fully dispersed
>	 1

ux 2 < ux max ' MA 7 [(9/5) k + 11 partly dispersed
l

5. Shock Structure

Having established the integral curves for our problem, we turn now to

the question of the structure thickness in physical space. In particular,

we seek the role of precursor ionization in structuring the shock front.

Note first that the ionization effects can be decoupled from the structure

profile by defining a new variable x whose differential is



Thus, in terms of dx 1 , Eq.(20) becomes

dB z

dx	 BzCux - 22	 = g(Bz)
MA

1

where ux (B z) is given by Eq. (24) .

Figure 5 shows the variation of the gradient (dB z /dx) in terms of

local values of B  for (a) a fully dispersed shock structure and (b) a

partly dispersed shock structure. Clearly, the gradient builds up from

zero to some maximum value and then decreases to zero again at state 2.

In. the case of the partly dispersed shock dB z/dx changes discontinuously

at the point corresponding to the velocity jump discussed previously.

Equation (29) is integrable by a simple quadrature, although the

(29)

.ins to

max imu

and u
x

fronts

origin x =0 rem

at the point of

variation of Bz

dispersed shock

be specified. This can be done by letting x = 0

n magnetic field gradient g = (dB z/dx)max* The

with x for typical fully dispersed and partly

is illustrated in Fig. 6. Evidently the shock

transition takes place in a distance-characterized by Ax = 0(10).

It remains to relate the transformed coordinate x to the physical
length coordinate x' if we are to assess the self-induced ionization

length discussed in the Introduction. Calculation of the inverse trans-

formation will in general require numberical integration of Bgs.(15h) and

(151) .

Iii order to gain some insight into the transformation from x to x

coordinate, we will consider the special case of a partly-dispersed

shock where the gas is only slightly ionized. (The slightly ionized

assumption is analogous to that made in Ref. 5 by Perona and Axford).

19



Specifically, in addition to assuming P -+ 0, we shall in addition

suppose that a is of the order or less than 10 -4 throughcut the structure.

This assumption allows us to neglect the effect of ionization on temperature,

since a0 ion << 1 [Gion ' 610 for argon] and the effect of Coulomb inter-

actions on electrical conductivity, Applying these approximations, the

downstream velocity, magnetic field and temperature can be expressed,

u -I , :B	 (2/3)k (-4+5M' _M4 1k
x	 2	 z 	 A A i	2 MA	2	 1 1

1

5^1	 ^ z
T2	 a (^ _	 (30)

\	 r^
1

Similarly, the preceding approximations allow us to express the magnetic

Reynolds number as

Rm k1a	 (31)

^ e2	 37T("""A
where k1 = C 0 ,2/

C	 3 / - 2 1
p 1Q	 16m 3) MA I-1

where we have used the fact that from Eq , .(14) F = QeA/Q ' when the degree
1

of ionization is small.

In making numerical estimates of Rm, the values of Q" given by

Devoto14 appear to be the most up-to-date and accurate ones available.

Consistent with the slightly ionized assumption and a corresponding low

	

temperature precursor, we take Devoto's value, Q	 10 -
20
 m (500 < T" < 30000K).

20



As an example, consider the partly dispersed shock illustrated in

	

Fig. 6b MA = (3)' propagating in un-ionized argon at p	 1, 33 x 102

N/m (= 1.00mm HS), T = 300°K, p/ = p' (RTC) = 2.13 x 10 -3 kg/m3.

Substituting these numerical values, together with the required constants

given previously into Eq. (31) gives Rm p,,j k j^, where k1 = 3.4 x 10-4.

Knowing the relation Rm(x) = k la(x), we have from Eq.(28),

dx = k la(x) dx
	

(32)

Thus, the transformation ^ -+ x requires a knowledge of a(x). From

Egs.(15h) and (15i), in the present approximation (small ionization,

precursor is ionized by photoionization since electron-atom impacts are

rare) the governing equations become,

2

da= - dqr ; 
dq^

- U q -=0 	 xsx
dx	 dx	

d2
	 1 r	 s

where x is thelocation of the imbedded shock. The associated boundary
s

conditions are

at x -+ -w; a=qr=0

at x = x  ; a = a2

Correspondingly, the solution is

a(x) = a2 e (3) 4 1 (x-_. 
S)

z
q r (x) = - a2 e (3) 1&1(x-xs)

(33a)

(33b)
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Recall. that 4l M %'/%' --- 6.24 x 10 -3 , therefore 
41 << 

1 , l.nce the

photon mean free path is much greater than the atom-atom mean free

path) .

Substituting Eq.(33a) into tq.(32) and integrating such that

x=0atx=0 gives

(3)k', 1 x = k
j. 
a

2 
e- (3)k4lxs 1G(3)k,&,x 

» 1

But since Ax and Ax are at most of or4er 10 and (3)k4 is of order 10
-2

we can approximate	 (3)k4lx 	 ^ 3	 x a,d 
-(3)k^

PP 	
le
	 l^	 ()^1 ^t a	 1 x s	 1so

that the above becomes simply x k l(x2x. But x =_x'/%'  so we can

write the physical shock thickness AL / as

AL 
	

-s 1

k l

For the conditions discussed previously, the upstream mean free path is

5.4 x 10 -5m. From Fig, 6a the extent of the shock in the ^ coordinate

is AX  pj 10 while from prior calculations k l ;:,, 3.4 x 104; .Substituting in

Eq.(33) gives the relation AL'a2 — 1.5 x 10 -8m. Noting also from Egs.(13)

and (31) that both k 1 and ^^ are inversely proportional to density p1 we

can conclude that the foregoing relation is density independent Thus, if

we have for example 
a2 ;:t^ 10

-5 , we get a shock thickness of AL A = 1.5 x 10-3m

= 0.15 cm independent of density. This dimension is considerably less than

the length of magnetic annular shock tubes commonly employed in the

laboratory. Finally, it should be understood that this length is independent

of the precursor length so long are the characteristic photoionization length

is much greater than that of atom-atom collisions: 41 = % I"/X jl << 1.

(33)
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6. Concluding, Remarks

Several aspects of switch-on magnetohydrodynami.c shock phenomenon

have been dealt with in the present study. It is found that if the

analysis is restricted to a conducting upstream state (magnetohydro-

dynamic mode) then the switch-on shock exists in the Alfven number range

I e, 
M	

2 for the monatomic gas model used here. Within this range,

the shock front is either fully dispersed or partly dispersed with

imbedded discontinuities depending on MA	Moreover, the effect of
1

precursor radiation on the overall structure dimension was studied for

the case of small, degrees of ionization and the Clarke-Ferrari model for
photo ionization,	 It was found that the precursor length is much

greater than the magnetohydrodynamic interaction length, hence there is

not appreciable influence on shock structure;

The effect of a more complex resonance radiation model for the precursor

such as that proposed by Vulliet 9 can also be considered in a qualitative

manner. Since the primary effect of such a phenomena would be to increase

the precursor length to even greater values than those used here, the

present analysis can still be considered to give a qualitatively correct

picture. This is so because.so long as the precursor length scale (over

which ionization and electrical conductive penetrate the upstream gas) is

much greater than the length scale over which magnetic induction effects

take place, the overall structure kill be independent of the precursor
length.

23
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This precursor-independence has been demonstrated herein for low

ionization levels. Since the interaction lengths are expected to be

even smaller for higher ionization Levels, it may be anticipated than

this effect extends to more highly ionized shocks as well.
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